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Abstract 
As polynomial regression is an effective methodology, 
statistic methods are traditionally used to 
characterize digital cameras; and hence establish the 
relationship between RGB and XYZ. From correlated 
research, high-order polynomial algorithms 
definitely give us the balance between the costs and 
computational times. However, from that way, it can 
only work at a fixed/tested light source which is 
already known. Consequently, when light source is 
changed, it is required to measure and rebuild 
another profile data. Also, such methods couldn’t 
solve metamerism, caused due to the errors of XYZ 
calculation via camera’s receptor inside, which is 
different from our human eyes. Therefore, it would be 
meaningful to characterize the digital camera, to 
have the ability to adapt the change of light sources. 
The valid method considered would be to estimate 
and reconstruct both spectrum of an object and a 
light source used. Then XYZ under any light source 
can be obtained accordingly. Basis vectors at 
appropriate amount, theoretically, can approximate 
reflectance/radiance spectra of objects. Also in 
practice, it gives satisfactorily acceptable results and 
reduces unnecessary calculations. Hence, via an 
SVD (Singular Value Decomposition) approach, an 
adaptive method of basis vectors was carried out in 
this study to estimate the spectral radiance of objects 
considered. A set of Gaussian-type spectral 
sensitivity functions of sensors, optimized by iteration 
using the Wiener, for camera simulated was used. 
Therefore in a known light condition using either of 
the Wiener and the PI, the spectral energy (radiance), 
which the camera sensor picks up with basis vectors, 
could be rebuilt. Consequently, the color profile of 
XYZ values could be obtained via the calculation of 
product of spectral radiance of objects, color 
matching function. Finally the relationship between 
RGB and XYZ for a digital camera tested in any light 
source could be established easily. Consequently, a 
universally performing camera characterization 

model could be derived.  

 

Introduction 
Colorimetrically in color applications, the color of an 

object in a scene depends both upon the spectral 

composition (i.e. spectral radiance) of the light that 

illuminates the object and the object’s spectral 

reflectance. Tri-stimulus values CIEXYZ are used to 

recognize what the eyes see. The CIEXYZ is 

composed of light source spectral energy E(λ), object 

surface spectral reflection R(λ) and observer color 

matching functions ( x , y , and z ). Above 

relationship can be established by equation (1). 
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Using p to substitute CIEXYZ, r= E(λ) R(λ) for 

spectral energy of object surface, W for color 

matching function, then a matrix form can be used to 

replace equation (1) and expressed as below (equation 

(2)). 

 
Tp W r= ⋅           (2) 

In a digital camera characterization, the tested 

camera’s response, simulated human eyes, of actual 

color stimulus, could be determined by the 

transforming its device dependent space RGB to the 

device independent space CIEXYZ. Practically, a 

polynomial regression approach using the least 

squares method is used to characterize a digital 

camera in question; and usually a set of optimized 

coefficients for 3-by-3 matrix (denoted as M in this 
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paper later) can be effectively performed the 

characterization. Consequently CIEXYZ can be 

defined by equation (3). 
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However matrix M from regression is workable at 

fixed illuminant. Every different light source has its 

own particular matrix M (Jetsu et al. 2006). 
 

A spectral reconstruct method, based on basis vectors, 

was applied for the digital camera characterization in 

this study. The surface spectral radiance of an object 

under a specific illumination condition, measured by 

spectrophotometer ranged in 400-700nm at interval of 

10nm, would produce 31 data-points. Therefore, for 

the ColorChecker considered with 24 color patches, it 

would consist of a 31x24 matrix of color signal data. 

This color signal matrix can be composed of both 

basis matrix and coefficients matrix, shown as 

equation (4). 

ColorChecker Basis matrix; Coefficients matrix
Color Signal one column one basis

31 24 31 3 3 24
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥× = × • ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      (4) 

In this paper, an SVD (Singular Value Decomposition) 

method was used to firstly analyze the surface 

reflection of a large numbers of objects surface; and to 

further find the entire spectral basis vectors which can 

approximate the spectral reflection/radiance of objects. 

Also the coefficients matrix can be obtained using 

methods of the Pseudo-Inverse(Valero et al. 2006) 

and the Wiener (Ge et al. 2005). Therefore the 

original spectral reflection (i.e. radiance) of objects 

considered could be rebuilt by multiplication of both 

basis vectors and specific coefficients obtained.  

 

An ideal equi-energy illuminant E was used in this 

study to rebuild the spectral radiance of 1600 color 

patches in Munsell Book Glossy Database (Orava). 

The illuminant E, ideally having equal spectral power 

distribution (SPD), was hypothetical to provide a 

perfect modality to build a known database of spectral 

radiance by the multiplication of its SPD and the 

spectral reflectance of database of interest (e.g. 

Munsell Book Glossy Database). Consequently, a 

satisfactorily universal performing camera 

characterization model could be derived. Hence the 

model derived should have carried out effective 

characterization results under various viewing light 

sources or illuminants with different color 

temperatures.  

 

Both a digital camera and the human eyes have 

different responses to the same spectral energy. 

Original output RGB values from camera’s sensor are 

integral results of the spectral energy and camera 

sensor’s response curve. A non-real camera using a 

triad of sensors with an optimal Gaussian type of 

spectral responses obtained by an iteration approach 

was chosen in this study to estimate original RGB 

values, and further to derive a universal camera 

characterization model. The choice of non-real camera 

sensors avoided the unnecessary inherent interference 

variables, produced by a real/physical camera 

considered, in the process of spectral estimation. As a 

consequence, using in a real commercial camera, 

those uncertainties would more-or-less have impacts 

on the predictions accuracy by using the model 

derived. 

 

Experimental and Methodology 
Four steps of procedure were carried out in this study 

as shown in Figure 1. The first, by applying SVD, all 

the spectral basis vectors, used to reconstruct spectral 

radiances of objects under the E illumination 

condition was found. As mentioned earlier, 31 

spectral basis vectors should be predicted. Then in 

second step, by carrying out an iteration approach, a 

set of optimal Spectral Sensitivity Functions of 

Sensors (SSFS) for a simulated three-primary digital 

still camera which was suggested by Sun and Chen 

(2005) was predicted. In the optimization process of 

simulated SSFS, the iteration approach was 

implemented using the Wiener (Ge et al. 2005) to the 

recovery of spectral radiance of objects (colors) 

tested.  

168 Copyright 2007



 

Figure 1. Experimental procedure in the derivation of digital 
camera device characterization. 
  

Subsequently, in the 3rd step, the obtained optimal 

spectral sensitivity functions carried out a search of 

the optimally minimum number of basis vectors in 

that the spectral reconstruction results could be still 

satisfactorily obtained. Finally, the characterization 

models, derived via spectral reconstruction process 

using the optimized set/number of basis vectors, 

would be evaluated under different illumination 

conditions. 

 
Singular Value Decomposition (SVD) 

The spectral radiance of each color considered can be 

reconstructed via the spectral-radiance basis vectors, 

estimated using a priori SVD-based spectral analysis 

of known existing databases of radiance color spectra 

under a known illuminant condition (here as 

mentioned, illuminant E was used). 

 
Suppose a representative dataset of radiance color 

spectra with m color samples are collected in the study. 

Every color in database is uniformly sampled at n-1 

wavelength intervals. Then R, a n-by-m matrix, can be 

derived using the SVD method and written as 

equation (5). 

(1) (2) ( )( , , , )T k
k k kR U S V U C u u u C= ⋅ ⋅ ≈ = L         (5) 

Here U is a n-by-n orthogonal matrix, V is a m-by-m 

orthogonal matrix, and S denotes a diagonal matrix. 

Both U and S can be expressed by equations (6) and 

(7) respectively. 

(1) (2) ( )( , , , )nU u u u= L                        (6) 

1 2( , , , )nS diagonal d d d= L                    (7) 

Here (1) (2) ( ), , , nu u uL  are basis vectors in question; 

1 2, , , nd d dL are singular values, singular values 

represent the weight of corresponding basis vectors 

in original database. A common convention is to 

order the singular values in non-increasing fashion. 

The former singular data would have the bigger 

values than the latter ones, and their corresponding 

basis vectors would have more weight. In this case, 

the diagonal matrix S is uniquely determined by R. 

 

An extensive analysis of color spectra of the full set of 

Munsell Book Glossy Database of 1600 color patches 

based on SVD was used in this study. As mentioned 

above, the purpose of this analysis was to look for the 

most efficient basis number, from the statistical point 

of view, for a given color set by using basic functions. 

In the beginning, five basis vectors, considered 

sufficiently representing the spectral accurately 

enough, were firstly selected after the analysis, and 

illustrated in Figure 2.  

 
Figure 2. First 5 basic vectors of Munsell Book Glossy.  

Moreover, the accuracy of representing the spectra, 

using every of the basis-vectors number ≤ 5, was 

evaluated. Accuracy performances were tested in 

terms of both singular value “ dk ”and character 

existence rate “en(k) ”(Ge et al. 2005), and listed in 

Table 2. The results showed that three vectors are 

adequately enough to achieve 93% of the variance of 
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spectra (i.e. spectral radiance), as shown in Table 1. 

Table 1. First 5 values of dk and en(k) 
k 1 2 3 4 5 
dk 78.7 21.3 12.4 4.0 3.0 
en(k) 69.4% 83.4% 92.9% 94.9% 96.3% 

Pseudo-Inverse 

As described above, spectral radiance of objects 

(colors) can be composed of both basis vectors and 

coefficients. The explicit formula is: 
(1) (2) ( )

1 2
k

k kr u c u c u c U c= + + + =L          (8) 

From equation (2), it could obtain the formula 
T

kp W U c=   

And, the Pseudo-Inverse is just the inverse: 

( )T
kc W U p+=                         (9) 

If the channels of sensors used in this study were 

limited to three, so that k = 3. Then  

1
3( )Tc W U p−=  

Wiener 

Statistically based on Wiener method, the below 

formula could be obtained:  

1
3 ( )( ) ( ( )( ) )T T T T T T T

k k k k k k kc C C W U W U C C W U −=     (10) 

3c c p=          (11) 

Firstly the combination values c3 could be computed 

via equation (10), then, multiply with camera’s 

original output values, we have the coefficients c. Due 

to constant spectral sensitivity of sensor in changes 

light source (Romero et al. 2006) , coefficients c 

produced from Wiener is valid in any illuminant. 

Optimized Spectral Sensitivity Functions 

As mentioned earlier, following up the study from 

Sun and Chen (2005), the possibility of using sensors, 

with a Gaussian profile centered on the predetermined 

peaking wavelengths for RGB sensors responses in 

581, 551, and 450 nm respectively, was studied here.   

 

Every of the triad of Gaussian Sensor’s spectral 

sensitivity functions are defined in equation (12). Here 

P and σ terms represent peaking wavelength and 

distribution-curve smoothness. Using an optimized 

factor t, the Gaussian function can be shaped into 

rectangle-like, and used to increase the 

color-rendering accuracy. 
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    (13) 

Table 2. Parameters used to optimize spectral 
sensitivity functions of sensors. 
 R G B 
Response 0.56939 0.65399 1.00000 
P 581 551 450 
σ 40 38 25 
t 0.0 0.05 0.12 

Hence, the P, σ , and t values suggested by Sun and 

Chen (2005), were adopted in the process of spectral 

reconstruction. Each of the PI and the Wiener 

approaches was used to optimize spectral 

reconstruction of Munsell Book Glossy 1600 color 

samples, tested under E illumination condition. 

Therefore, the optimized relative peaking responses, 

obtained for each of RGB sensors, were 0.57, 0.65, 

and 1.00 respectively. Those experimental data are 

listed in Table 2. The optimized spectral sensitivity 

functions are shown in Figure 3, and compared with 

CIE 1931 color matching functions. 

 
Figure 3. Compare CIE 1931 color matching functions with the 
optimized spectral sensitivity functions 

 

Results 

Experimental (1): Find the Best Minimum Number of 
Basis Vector 

As mentioned earlier, the optimally adequate 

minimum number of basis vectors representing the 

spectra accurately enough, have been discussed 

widely in the literature, and also was one aim in this 

study. Therefore preliminarily under D50 illumination 

condition, using an iteration approach of either of the 

Wiener and the Pseudo-Inverse, the quality of the 

resulting estimated spectral radiance recovered in 
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different amount of basis vectors were evaluated using 

SOCS Typical Data Set. Two error measures of 

RMSE (root of mean square error) and CIEDE2000 

color difference (i.e. ΔE*00) were proposed to evaluate 

the quality. The SOCS (Standard Object Colour 

Spectra Database for Colour Reproduction Evaluation) 

database (ISO 2003), provided by ISO (International 

Organization for Standardization) is a collection of 

about 50,000 reflectance or transmittance spectra with 

wavelength range from 400 to 700 nm at 10 nm 

intervals. As for SOCS Typical  data Sets, “Typical 

sets ” refers to sets of typical spectral reflectance in 

SOCS database. It is part of “Graphics ” and “Face ”
which is out of proportion to whole SOCS database, 

and is suggested to be used as representative data of 

SOCS database for evaluating. The selection of 

“ typical sets ” can reference to ISO/TR 16066 

technical report (ISO 2003).  

 
For every reference sample in SOCS Typical database, 

Two measures considered were calculated with the 

reference color signal considered (in database) to the 

corresponding recovered color signal. RMSEs was 

computed between the recovered spectra and original 

reference ones in the 31-dimensional space; while 

ΔE*00 was calculated between XYZ values of the 

recovered color signal and those of the original 

reference color signal in question. 

 
Table 3. Different numbers of basis-vectors 
performance 

ΔE*00 k method RMS 
Ave Max 

PI 0.05690 0.415 2.859 3 
Wiener 0.05686 0.420 2.864 

4 Wiener 0.05691 0.426 2.875 
5 Wiener 0.05693 0.422 2.879 

 
Table 3 shows RMSE, and ΔE*00 values of both mean 

(i.e. Ave.) and maximum (i.e. Max). It can be seen that 

both PI and Wiener gave similar performances of 

spectra reconstruction. Also the use of three basis 

vectors leads sufficient recovery results which 

correspond to Chiao’s findings (Chiao et al. 2000) it 

seems that, as  a triad of sensors was hypothesized 

used in the simulated camera in this study, the use of 

more amount of basis vectors than 3 didn’t increase 

the quality of spectral recovery.  Still for more 

comprehensive comparisons between both iteration 

approaches of Wiener and PI, they would be 

separately applied in next the stage of derivation of 

camera characterization models which were based on 

basis-vectors algorithm described earlier.  

Experimental (2): Universality Performance Test on 
Camera Characterization Models 
Three spectral datasets were chosen to test the 

universality performance in terms of ΔE*00, of various 

camera characterization models, derived under six 

illumination conditions based on different approaches.  

 
Table 4. Data set for Performance Test 
Test 
Set 

Database Number of colors 

1 Munsell Book Glossy 1600 
2 SOCS 53489 
3 SOCS Typical Sets 235 

Those spectral data sets, listed in Table 4, were: 1) 

Munsell Book Glossy, as used in the derivation of 

spectral recovery model; 2) whole set of SOCS; 3) 

SOCS Typical Sets. Six illumination conditions of 

interest, divided into two categories of “D65, D50, A” 

and “F2, F8 and F11” used as illuminants, were 

considered in the test. Totally, five types of models 

were developed here to characterize simulated camera. 

Those were derived separately using: a) 3-by-3 matrix 

of dependent regression model under every of six 

tested illuminants; b) 3-by-3 matrix of independent 

regression approach, only under D50; c) basis-vectors 

approach based on the Pseudo-Inverse method; and d) 

also basis-vectors approach, but implementing the 

Wiener technique.  

 
Table 5. Performance obtained under D65, D50, and A 
illumination conditions (a for dependent regression , b for 
independent regression, c for basis-vectors approach using the 
Pseudo-Inverse method, and d for basis-vectors approach 
using the Wiener method). 

D65 D50 A S
e
t 

 

Ave Max Ave Max Ave Max 
a 0.306 1.120 0.255 1.208 0.238 1.554 
b 7.434 15.32 0.255 1.208 30.48 44.76 
c 0.283 1.160 0.226 1.318 0.812 3.016 

1

d 0.318 1.180 0.245 1.333 0.802 3.003 
a 0.282 2.399 0.258 2.484 0.282 3.970 
b 6.325 24.53 0.258 2.484 28.86 45.28 
c 0.276 2.420 0.310 2.858 1.016 8.777 

2

d 0.298 2.453 0.319 2.864 1.007 8.772 
a 0.329 1.818 0.318 2.485 0.381 3.972 
b 6.524 14.23 0.318 2.485 29.74 44.91 
c 0.344 2.000 0.415 2.859 1.160 7.588 

3

d 0.360 2.009 0.420 2.864 1.152 7.583 
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Table 6. Performance obtained under F2, F8, and F11 
illumination conditions (a for dependent regression , b for 
independent regression, c for spectral recovery approach using 
the Pseudo-Inverse method, and d for basis-vectors approach 
using the Wiener method). 

F2 F8 F11 S
e
t 

 

Ave Max Ave Max Ave Max 
a 0.909 3.977 0.913 3.740 1.069 4.470 
b 23.06 31.00 20.01 22.05 38.78 46.20 
c 0.790 1.963 0.482 1.297 3.530 9.017 

1 

d 0.790 1.963 0.482 1.297 3.530 9.017 
a 1.128 6.689 1.059 5.898 1.275 7.920 
b 21.10 31.66 18.45 23.04 36.19 46.86 
c 0.877 3.598 0.524 3.363 3.299 14.64 

2 

d 0.848 3.589 0.524 3.363 3.299 14.64 
a 1.151 5.134 1.133 4.964 1.306 6.070 
b 22.13 31.08 19.49 22.38 37.50 46.71 
c 0.883 2.560 0.610 2.854 3.457 8.508 

3 

d 0.883 2.560 0.610 2.854 3.457 8.508 

The results obtained are summarized in Tables 5 and 6 

for both illumination conditions of “D65, D50, A”, 

and “F2, F8, F11” respectively. As expected, the 

independent regression model unacceptably 

performed the worst, and only gave satisfactory 

results under D50 which was used to derive 3-by-3 

matrix. Again both Wiener and PI models gave 

similar predictions for all spectral data sets under 

every illumination condition considered. Additionally, 

there were no noticeable differences between the 

basis-vectors approaches of both Winner and PI and 

the dependent regression one, under all illumination 

conditions except A and F11, for every data set. 

Figures 4 and 5 depict the spectral power distributions 

of these two categories of illuminants. As shown, it 

was found that illuminant A has higher energy in 

longer wavelengths than that in lower ones; while F11 

consists of apparent peaking effect of spectral power 

distribution curve. This resulted in that basis vectors, 

calculated using the Munsell Book Glossy under 

equi-energy illuminant E, couldn’t reconstruct spectral 

radiances of those databases under both A and F11 as 

accurately as those under the other illumination 

conditions. 

Figures 6 and 7 show comparisons between the real 

spectral radiance and the predicted one, of a test 

sample respectively under the F11 and A illuminating 

conditions.  

It can be clearly seen that there were poor recovery in 

whole wavelength and only higher-wavelength 

segments respectively under illuminants F11 and A. 

However, in a strictly speaking, those prediction 

performances were still visually considered 

satisfactorily acceptable.     

 

 
 
Figure 4. Spectral power distributions of D65, D50, and A 
illuminants. 

 

 
 
Figure 5. Spectral power distributions of F2, F8 and F11 
illuminants. 

  

 
Figure 6. Estimated and actual spectral radiances of a test color 
under illuminant F11 
 

  
Figure 7. Estimated and actual spectral radiances of a test color 
under illuminant A 
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Conclusions 
Based on basis-vectors approach, via either of the 

Pseudo-Inverse or the Wiener approaches, the derived 

camera characterization models could achieve 

optimally highly universality performance if the 

illuminant is daylight and the three sensors that 

capture the image have Gaussian-type sensitivities. It 

indicates that color constancy can be satisfactorily 

fulfilled. However, the application of the invariant 

will depend upon the extent to which the real 

illuminants that resemble Daylight ones and the 

sensors of the camera, of more-or-less wide spectral 

sensitivity, can provide results that are not far 

removed from those that the ideal Gaussian type of 

triads of sensors gives. 
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